If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-x-192=0
We add all the numbers together, and all the variables
x^2-1x-192=0
a = 1; b = -1; c = -192;
Δ = b2-4ac
Δ = -12-4·1·(-192)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{769}}{2*1}=\frac{1-\sqrt{769}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{769}}{2*1}=\frac{1+\sqrt{769}}{2} $
| 3×(x-3)=4×(x+2)-5 | | 8x–5x+3=x+3 | | -16-6x-6x=-6-2x | | 2(4y+1)=7y+13 | | 2.89=1.1(c-2.2)-1.18 | | M+6-4m=-4(2m+6) | | 4y=-4+6(-9y-9) | | 8c=10-3(-6c-10) | | 2x-7=3-5x | | 2.47(r-7)=2.47 | | 2.32(u+10)-9=-6.68 | | 9-x=-18 | | 0.3n^2-2n=(n^2) | | -(v+-4)+-1=8 | | -8-3n+4n=2+3n | | 3(a-4)=a+2 | | -2.68(s-7)+-5.19=-5.19 | | (8y-3)-25=180 | | (h+6)/5-(2)=0 | | (8y-3)+25=180 | | (8y-3)+72=180 | | 5x+8-4=9 | | (y+6)/5-(2)=0 | | 6q-1=20-q | | h/4+11=15 | | 25+(8y-3)=180 | | -1=x-1+7x | | (x+30)+72=180 | | -108=6(v-8)+6v | | t²-t-20=0 | | y^2+7y+20=0 | | T2-t-20=0 |